Application of Artificial Intelligence Algorithms in Last-Mile Route Optimization for E-commerce

Authors

DOI:

https://doi.org/10.51923/repae.v11i3.408

Keywords:

Last Mile, Artificial Intelligence, E-commerce

Abstract

The exponential growth of e-commerce has intensified the logistical challenges of the "last mile," the final stage of delivery, which is characterized by high complexity, significant costs, and a direct impact on customer satisfaction and sustainability. In this context, Artificial Intelligence (AI) emerges as a robust solution for route optimization. This paper aims to evaluate and compare the performance of two bio-inspired metaheuristics: Genetic Algorithms (GA) and Ant Colony Optimization (ACO). A simulation was developed and applied to a set of 100 random delivery points, running both algorithms under equivalent computational conditions and parameters (1000 iterations/generations) to minimize the total distance traveled. The results demonstrated the effectiveness of both methods in optimizing the initial routes. However, the comparative analysis revealed the superiority of ACO, which achieved a *percentage distance reduction of 17.9%, surpassing the **14.9%* obtained by GA. Furthermore, ACO exhibited faster convergence, stabilizing the solution around iteration 200, whereas GA required approximately 300 generations. It is concluded that, for the simulated scenario, the cooperative model of ACO proved to be more robust and efficient in solving the routing problem.

Downloads

Download data is not yet available.

Author Biographies

EMERSON APARECIDO MARTINS, FATEC - MOGI DAS CRUZES

NA

GUILHERME LIMA ANTEBI, FATEC - MOGI DAS CRUZES - SP

NA

RAFAEL ALMEIDA, FATEC - MOGI DAS CRUZES - SP

NA

FRETZ SIEVERS JUNIOR, FATEC - MOGI DAS CRUZES - SP

Possui graduação em Engenharia da Computação(2001) e Bacharel em Direito (2010) pela Universidade Braz Cubas, Ciências Contábeis (2016), Tecnologia em Análise e Desenvolvimento de Sistemas (2020), Licenciatura em Matemática (2020) e Licenciatura em Português - Inglês (2020) pela Universidade da Cidade de São Paulo. Engenharia de Produção pela Universidade Virtual do Estado de São Paulo - Univesp (2019), Engenharia Civil pela Universidade de Santo Amaro, Mestrado em Engenharia Eletrônica e Computação pelo Instituto Tecnológico de Aeronáutica (ITA) (2005), Mestrado em Direito Público pela Pontifícia Universidade Católica de SP e Doutorado em Engenharia Eletrônica e Computação pelo Instituto Tecnológico de Aeronáutica (ITA) (2011). Atualmente é Professor de Ensino Superior da Faculdade de Tecnologia Mogi das Cruzes, Faculdade de Tecnologia de Mauá, Faculdade de Tecnologia de Itaquera e Faculdade de Tecnologia de Osasco. Tem experiência na área de Ciência da Computação, com ênfase em Sistemas de Computação, atuando principalmente nas seguintes áreas: ERP, MRP, Simulação, Pesquisa Operacional, Web Sites, Ensino a Distância, e-commerce, Sistemas de Informação, Auditoria de Sistemas, VANT, Governo Eletrônico, Engenharia de Software e Segurança de Informação, Computação em Nuvens, IOT e Inteligência Artificial. Na área de Direito tem experiência área de contencioso cível, tributário, público, administrativo e direito digital.

References

Use of artificial intelligence in last mile delivery | SHS Web of Conferences. Disponível em: <https://www.shs-conferences.org/articles/shsconf/ref/2021/03/shsconf_glob20_04011/shsconf_glob20_04011.html>. Acesso em: 1 out. 2025.

SILVA, V.; AMARAL, A.; FONTES, T. Sustainable Urban Last-Mile Logistics: A Systematic Literature Review. Sustainability, v. 15, n. 3, p. 2285, 26 jan. 2023. DOI: https://doi.org/10.3390/su15032285

Vista do Uma revisão de escopo assistida por inteligência artificial (IA) sobre usos emergentes de ia na pesquisa qualitativa e suas considerações éticas.Disponível em: <https://editora.sepq.org.br/rpq/article/view/729/467>.

Vista do O papel dos algoritmos de inteligência artificial nas redes sociais. Disponível em: <https://revistaseletronicas.pucrs.br/revistafamecos/article/view/34074/19629>.

DORIGO, Marco; STÜTZLE, Thomas. Ant Colony Optimization. Cambridge: MIT Press, 2004. DOI: https://doi.org/10.7551/mitpress/1290.001.0001

GOLDBERG, David E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading: Addison-Wesley, 1989.

OLIVEIRA, Carlos A. S. (org.). Handbook of Artificial Intelligence and Data Sciences for Routing Problems. Cham: Springer, 2024 DOI: https://doi.org/10.1007/978-3-031-78262-6

POURMOHAMMADREZA, N.; et al. Last-mile logistics with alternative delivery locations: a systematic literature review. Transportation Research Interdisciplinary Perspectives, v. 27, 2025. Disponível em: https://www.sciencedirect.com/science/article/pii/S2590123025001732. Acesso em: 19 dez. 2025.

KOTLARS, Aleksandrs; SKRIBANS, Valerijs. Efficiency, environment and robotization in first and last mile logistics: a literature review. Transportation Research Interdisciplinary Perspectives, v. 27, 2025. DOI: https://doi.org/10.1016/j.trip.2024.101215

GHANEM, Ghazal; et al. Analysis of logistics measures of CEP service providers for the last-mile delivery in small- and medium-sized cities. European Transport Research Review, 2025. Disponível em: https://elib.dlr.de/212298/1/Ghazal_et_al-2025-European_Transport_Research_Review.pdf. Acesso em: 19 dez. 2025. DOI: https://doi.org/10.1186/s12544-025-00706-z

SLOBODAN, Ghazal; et al. Innovative solutions in last mile delivery: concepts, practices and challenges. European Transport Research Review, 2023. Disponível em: https://www.tandfonline.com/doi/full/10.1080/16258312.2023.2173488. Acesso em: 19 dez. 2025.

PANGARIBUAN, M. A. Literature review on vehicle routing problem: approaches, algorithms and current challenges. Journal La Multiapp, v. 7, n. 3, 2025. Disponível em: https://www.newinera.com/index.php/JournalLaMultiapp/article/view/2382. Acesso em: 19 dez. 2025.

REN, T.; et al. Improved ant colony optimization for the vehicle routing problem with split pickup and split delivery. Cleaner Logistics and Supply Chain, v. 6, 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2210650223000020. Acesso em: 19 dez. 2025.

CRIADO, R.; LAPORTE, Gilbert. Metaheuristics for sustainable supply chain management. European Journal of Operational Research, 2019.

BRUNI, Maria Elena; FADDA, Edoardo; FEDOROV, Sergei; PERBOLI, Guido. A machine learning optimization approach for last-mile delivery and third-party logistics. Computers & Operations Research, v. 154, 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S0305054823001260. Acesso em: 19 dez. 2025. DOI: https://doi.org/10.1016/j.cor.2023.106262

EZMIGNA, I.; ALGHAMDI, A. The impact of AI tools on last-mile delivery in the e-commerce sector. IEEE International Conference on Artificial Intelligence Applications, 2024. DOI: https://doi.org/10.1109/DASA63652.2024.10836527

TIWARI, K. V.; et al. An optimization model for vehicle routing problem in last-mile delivery. Expert Systems with Applications, v. 228, 2023. DOI: https://doi.org/10.1016/j.eswa.2023.119789

Published

2025-12-30

How to Cite

MARTINS, E. A., LIMA ANTEBI, G., ALMEIDA, R., & JUNIOR, F. S. (2025). Application of Artificial Intelligence Algorithms in Last-Mile Route Optimization for E-commerce. Journal of Teaching and Research in Administration and Engineering, 11(3), 84–99. https://doi.org/10.51923/repae.v11i3.408

Issue

Section

IFLOG Suzano 25

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.